Estimating Functions for Blind Separation when Sources Have Variance-Dependencies

نویسندگان

  • Motoaki Kawanabe
  • Klaus-Robert Müller
چکیده

A blind separation problem where the sources are not independent, but have variance dependencies is discussed. For this scenario Hyvärinen and Hurri (2004) proposed an algorithm which requires no assumption on distributions of sources and no parametric model of dependencies between components. In this paper, we extend the semiparametric approach of Amari and Cardoso (1997) to variance dependencies and study estimating functions for blind separation of such dependent sources. In particular, we show that many ICA algorithms are applicable to the variance-dependent model as well under mild conditions, although they should in principle not. Our results indicate that separation can be done based only on normalized sources which are adjusted to have stationary variances and is not affected by the dependent activity levels. We also study the asymptotic distribution of the quasi maximum likelihood method and the stability of the natural gradient learning in detail. Simulation results of artificial and realistic examples match well with our theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New algorithms for blind separation when sources have spatial variance dependencies

Blind separation problem is discussed, when sources are not independent, but have spatial variance dependencies. Hyvärinen and Hurri (2003) proposed an algorithm which requires no assumption on distributions of sources and no parametric model of dependencies between components. In order to obtain semiparametric algorithms which give a consistent estimator regardless of the source densities and ...

متن کامل

Blind separation of sources that have spatiotemporal variance dependencies

In blind source separation methods, the sources are typically assumed to be independent. Some methods are also able to separate dependent sources by estimating or assuming a parametric model for their dependencies. Here, we propose a method that separates dependent sources without a parametric model of their dependency structure. This is possible by introducing some general assumptions on the s...

متن کامل

Nonlinear ICA of Temporally Dependent Stationary Sources

We develop a nonlinear generalization of independent component analysis (ICA) or blind source separation, based on temporal dependencies (e.g. autocorrelations). We introduce a nonlinear generative model where the independent sources are assumed to be temporally dependent, non-Gaussian, and stationary, and we observe arbitrarily nonlinear mixtures of them. We develop a method for estimating the...

متن کامل

A Quasi-stochastic Gradient Algorithm for Variance-Dependent Component Analysis

We discuss the blind source separation problem where the sources are not independent but are dependent only through their variances. Some estimation methods have been proposed on this line. However, most of them require some additional assumptions: a parametric model for their dependencies or a temporal structure of the sources, for example. In previous work, we have proposed a generalized leas...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2004